Markets

MEMs

Fast-growing demand for MEMS sensors is already turning the niche into a much more mature industry, moving towards stable, high-volume production capability, tinier and lower cost devices, ever-improving performance, easy-to-integrate functions, and even faster time-to-market. But potentially huge future sensor applications will require more innovative manufacturing technologies and designs to reduce costs, as well as more focus on adding value beyond just the component, by things like integrating more sensor data and more intelligence to add functions to systems.

Neutronix Quintel provides our scalable, high volume NXQ8000 series of mask aligners, directly targeted at enabling process engineers to meet the most demanding requirements for thick film large gap alignment to highly accurate backside alignment  in the MEMs industry.

WLP

The wafer-level package (WLP) is a type of chip-scale package (CSP), which enables the IC to be attached face down to the printed circuit board (PCB) using conventional SMT assembly methods. The chip’s pads connect directly to the PCB pads through individual solder balls. WLP technology differs from other ball grid array, leaded, and laminate-based CSPs because no bond wires or interposer connections are required. In general, underfill material is not required for WLP. However, in certain applications such as mobile devices, underfill can enhance WLP mechanical robustness. The main advantages of the WLP are a small package size, a minimized IC-to-PCB inductance, and a shortened manufacturing cycle time.

3DIC and SiP

3D packaging saves space by stacking separate chips in a single package. This packaging, known as System in Package (SiP) or Chip Stack MCM, does not integrate the chips into a single circuit. The chips in the package communicate using off-chip signaling, much as if they were mounted in separate packages on a normal circuit board. In contrast, a 3D IC is a single chip. All components on the layers communicate using on-chip signaling, whether vertically or horizontally. A 3D IC bears the same relation to a 3D package that a SoC bears to a circuit board.

Compound Semi

Compound semiconductors can provide superior physical and chemical attributes in relation to silicon, the mainstream semiconductor material. The advantages that compound semiconductors offer are higher operating speed, lower power consumption, lower noise, higher operating temperature, light emission/detection, and superior photovoltaic attributes compared to silicon. Additionally, these attributes change from compound to compound, offering considerable design flexibility. But this variety of compounds works unfavorably in terms of scale and consequent pricing. Considering that these materials are pitted against silicon, the most widely available material with the most refined and cost-efficient fabrication process, there is a real danger of the competition being rendered lop-sided in favor of silicon.

Minimizing costs for compound semi fabrication can be a key advantage and Neutronix Quintel provides our scalable, high volume NXQ8000 series of mask aligners, providing a unique solution for carrier mounted wafers and backside alignment processing capability.

Optoelectronics

The optoelectronics industry is fast moving, innovative and technology driven. Over the past few years the optoelectronics industry has been subject to restructuring with many players coming together through mergers and acquisitions to form a few large leading companies operating as “one stop shops” offering complete solutions. But there are also many new start-ups and smaller entrants. These start-ups illustrate that it is still possible for SMEs to operate in this industry.

Neutronix Quintel offers both the R&D-focused NXQ4000 series of mask aligners to allow universities and smaller companies to effectively compete and also the scalable, high volume NXQ8000 series of mask aligners, targeting established players within the optoelectronics industry.

LED

LED manufacturers are looking for ways to decrease their capital equipment expenditures dropping LED counts per device coupled with the long-life of LED-based devices. These increased pressures on demand and cost are making it vital to invest in high-quality equipment that is cost-optimized for the LED market.

Neutronix Quintel is focused on minimizing costs for LED device fabrication by providing our NXQ8006 Sapphire, a scalable, high volume NXQ8000 series mask aligner, providing a cost effective and high throughput solution for LED device manufacturers.

Microfluidics

Microfluidics deals with the behavior, precise control and manipulation of fluids that are geometrically constrained to a small, typically sub-millimeter, scale. Typically fluids are moved, mixed, separated or otherwise processed. Numerous applications employ passive fluid control techniques like capillary forces. In some applications external actuation means are additionally used for a directed transport of the media. Examples are rotary drives applying centrifugal forces for the fluid transport on the passive chips. Active microfluidics refers to the defined manipulation of the working fluid by active (micro) components as micropumps or micro valves. Micro pumps supply fluids in a continuous manner or are used for dosing. Micro valves determine the flow direction or the mode of movement of pumped liquids. Often processes which are normally carried out in a lab are miniaturized on a single chip in order to enhance efficiency and mobility as well as reducing sample and reagent volumes.

It is a multidisciplinary field intersecting engineering, physics, chemistry, microtechnology and biotechnology, with practical applications to the design of systems in which such small volumes of fluids will be used. Microfluidics emerged in the beginning of the 1980s and is used in the development of inkjet printheads, DNA chips, lab-on-a-chip technology, micro-propulsion, and micro-thermal technologies.

2.5D Interposer - TSV

How do we define an interposer ?  Traditionally the chip packaging community defines  an interposer as the bridge between the on chip pitch and the on board pitch, i.e the interposer is traditionally the  package. With 2.5D or 3D, once again it’s all about the pitch. Chip IO cannot be connected in a stack unless the interfaces have been standardized to match. Thus today’s 2.5D interposer serves as a high density RDL so the chips can be connected either through the interposer.  The one criteria true for all of todays 2.5D interposers is that they must contain TSV.

Scratch Protect Layers

Upon completion, the entire wafer is covered with an insulating layer of glass and silicon nitride to protect it from contamination during assembly. This protective coating is called the passivation layer. The final mask and passivation etch removes the passivation material from the terminals, called bonding pads. The primary inorganic dielectric passivation films are SiO2 and SiN, while polyimides and epoxy resins are used for low-cost polymer encapsulation.  Patterns are formed in the passivation-layer material to enable electrical contact to the completed circuit. The area of these contact pads is sufficiently large. Polybenzoxazole (PBO) products are also used as a protective layer or “buffer coat” before packaging or redistribution layer and are well suited to be aligned and exposed with a 1X full field mask aligner.

Neutronix Quintel has a unique print chamber purge feature and can precisely control outgassing of Polyimides and PBO materials.

Solar - HCPV

High concentrated photovoltaics, or HCPV, concentrate the sun’s irradiation by a factor of 1,100. With a record-breaking efficiency of over 33 percent, HCPV systems have the potential to achieve the lowest power generation costs of any solar technology.  Because the cells are so small and powerful, manufacturing a module requires less semiconductor material per watt. The challenge lies in process engineering for the procedure.

 

I highly recommend the NXQ8000 Series Mask Aligners for the production of MEMS, SAW, Power devices, diodes and other telecom devices.

Dr. Thomas Johnston, XFAB
After using a NXQ mask aligner for almost 10 years, we were so happy with the performance that we chose the NXQ4006 as our new 6" platform.

Dr. Daniel Irimia, Harvard Medical School
The NXQ equipment seemed to have the best combination of product features and cost performance for our needs, and we have been very happy with the technical support.

Janice K. Mahon, Universal Display Corp.